
Design and Implementation of Performance
Guaranteed Symmetric Load Balancing Algorithm

Shaik Nagoor Meeravali#1, R. Daniel*2, CH. Srinivasa Reddy#3
#M.Tech, Department of Information Technology, Vignan's Institute of Information Technology, JNTU-KAKINADA,

Andhra Pradesh, India
*Associate Professor

Department of Information Technology, Vignan's Institute of Information Technology, JNTU-KAKINADA, Andhra
Pradesh, India

Abstract— Mainly Distributed Hash Table (DHT) uses
decentralized load balance algorithms which are based on
virtual servers for participating in asymmetric peers. Require
the participating peers to be asymmetric, there by introducing
another load imbalance problem which is symmetric and
promise no precise performance metrics. In this paper, an
original symmetric load balancing algorithm for DHTs is
introduced where the peers approximate the system state with
histograms. Unlike other algorithms, proposed work
guarantees analytical performance in terms of the load
balance factor and high convergence rate. Through
implementation using Java and SQL server , shown that
proposal work performs better in terms of load balance factor
with a comparable cost.

Keywords— DHT, Symmetric, Asymmetric, Load Balance,
NAT, P2P, and Virtual Server.

I. INTRODUCTION

Load balancing is a technique used to spread a network
service workload between two or more devices. Benefits
include scalability, reliability, efficiency, redundancy, and
minimized response time. Load balancing can be achieved
either by running an application on a server (software load
balancing) or by using a special purpose device (hardware
load balancing). Software load balancing applications use a
server's CPU to process requests. A hardware load balancer
uses a processor made specifically for this purpose to
handle more requests. The load balancer brokers
connections and distributes the load between the client and
the servers. The server that receives the connection is
chosen using a preset algorithm. The packets that make up
the client request are translated by the load balancer (using
a process called NAT-Network Address Translation) before
being sent to the server. The client and the server are
equally unaware of the load balancer. Mainly Distributed
Hash Table uses decentralized load balance algorithms
which are based on virtual servers for participating in
asymmetric peers. Require the participating peers to be
asymmetric, thereby introducing another load imbalance
problem which is symmetric and promise no precise
performance metrics. In this paper, an original symmetric
load balancing algorithm for DHTs is introduced where the
peers approximate the system state with histograms.
Proposal work guarantees analytical performance in terms
of the load balance factor and high convergence rate.
Through implementation using java and SQl server, shown
that the proposal work performs better in terms of load

balance factor with a comparable cost. Distributed hash
tables (DHTs)[1] are key building blocks in the design and
implementation of successful distributed applications.
Designing a load-balanced, heterogeneity-aware DHT with
virtual servers is technically challenging. In particular, load
balancing algorithms[5] designed for DHTs based on
virtual servers need to take the following into consideration.
1. Load balance and movement cost: By load balance,
this mean that each peer manages the load proportional to
its capacity. Previous studies[6] suggest migrating virtual
servers among the participating peers in order to balance
peer load. However, this is at the expense of introducing
movement cost due to the migration of virtual servers. How
to balance peer load while reducing movement cost as
much as possible thus is a critical issue.
2. System dynamics: Load balancing algorithms need to
bear the system dynamics in mind because nodes may
dynamically join and leave DHTs. In addition, the load of a
virtual server may change from time to time, aggravating
the load imbalance problem in the DHTs.
3. Algorithmic robustness and workload: Load balancing
algorithms need to be robust without introducing the
performance bottleneck and the single point of failure. In
addition, as load balancing algorithms[5] incur algorithmic
workloads, such workloads shall not induce another load
imbalance problem. On the other hand, a well-designed
load balancing algorithm will not generate considerable
overheads.
4. Performance guarantee: Load balancing algorithms
shall work well with performance guarantee, given any
system instance. Specifically, DHT networks may operate
in dynamic and large-scale environments, thus presenting a
large number of problem instances for performance
investigation.

II. RELATED WORK

Earlier studies [12], [13], [14], [15] have proposed load
balancing algorithms, targeting static, small-scale, and/or
homogeneous environments. Due to space limitation, we
provide a concise review of the load balancing techniques
designed for DHTs in this section. As the previous study
[16] has provided a survey for the load sharing algorithms
in traditional high-performance computing systems, we
refer interested readers to [17], [18] for a survey on the load
balancing algorithms in DHTs.
In contrast to evenly partitioning the number of objects and
thus the key space to each participating peer, Chord

Shaik Nagoor Meeravali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7779-7783

www.ijcsit.com 7779

suggests the notion of virtual servers to balance the loads of
the peers [1] further. Existing works proposing load
balancing algorithms for DHTs with virtual servers can be
found in the literature [6], [9], [10], [11]. The many-to-
many framework presented in [6] categories participating
peers into light and heavy nodes. The light and heavy peers
register their load with some dedicated nodes, i.e., the
directories. As noted by the authors in [7], the many-to-
many framework essentially reduces the load balancing
problem to a centralized algorithmic problem. As the entire
system heavily depends on the directory nodes, the
directory nodes may thus become the performance
bottleneck and the single point of failure.
In contrast, in this paper, we are particularly interested in
obtaining fully performance guaranteed solutions using
symmetric manner to the load balancing problem.

III. SYSTEM ARCHITECTURE

Fig.1 shows the system architecture of symmetric load
balancing which gives the conceptual model that defines
the structure, behaviour, and more views of a system.

Fig. 1 Symmetric Load Balancing Algorithm

Client: In this system the Client sends the services to
Server which is manage the load using the Virtual
server.DHT categorised into two categories of peers that are
Light Peers (LP) and Heavy Peers (HP).
Server: Server manages the load by creating virtual servers.
These servers maintain the pending pool for requested data.
If the Virtual Server lost, the lost virtual server has been
handled by the Pending Pool and the requested data is
getting from the Pending Pool. Processes of pending pool
are shown in Fig.2.

Fig. 2 Processes of pending pool.

IV. MODULES OF THE SYSTEM

There are 5 modules in this proposed system
1. User Interface Design
2. Client Sever communication
3. DHT Implementation
4. Virtual Server Implementation
5. Pending Pool Implementation

User interface design
In Fig. 3 shows the user interface module design which
consists of windows. These windows are used to send a
message from one peer to another. We use the Swing
package available in Java to design the User Interface.
Swing is a widget toolkit for Java. It is part of Java
Foundation Classes (JFC) — an API for providing a
graphical user interface (GUI) for Java programs. In this
module mainly, focusing the Client Home Page with the
Partial knowledge information. Distribute Hash Table
maintain a neighbour information and it gets the partial
information about the clients and virtual server. Like client
name, ip address, port no etc. With this information client
can communicate with other clients in the network and
share their data.

Fig 3. User Interface Design
Client Sever communication
In this Module each client has been store the files in Server .
During the time of storage may be load appeared in the
Server. Accessing the Client may be increased then the
Server Performance is reduced. Server has been handling
the load using the virtual server. Virtual Server has been
automatically created during the time of load in server
which client access level increased. The detailed
architecture this module is shown in Fig.4

Fig. 4 Client Server communication

DHT Implementation
The DHT implementation shown in Fig.5, which shows the
Distributed Hash Table maintains two values such as a
Client details and Virtual Server details.DHT has been
categories the client into two category based upon the
Storage file size, first one is Light peer and second one is
Heavy Peer.DHT have been only monitor the which one is
Light Peer and Heavy Peer. Then the Client requested files
have been stored in a Virtual server using the Distributed
Hash Table .Client has been give the request a file to
Virtual Server .DHT has been check which Virtual Server
maintain the Client file and forward to Virtual Server.
Distributed Hash Table has been reducing the Movement
cost in a network. In a typical DHT, participating nodes can
join and leave, arbitrarily. Thus, the reallocation of a virtual
server from a source peer to a destination peer can be

Shaik Nagoor Meeravali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7779-7783

www.ijcsit.com 7780

simply done by simulating the leave and join operations
offered by a typical DHT.

Fig. 5 DHT Implementation

Virtual Server Implementation
Virtual Server has been storing the all client files. Each
Virtual Server has a separate memory. Client has been give
the request file to Virtual Server.DHT has been check
which Virtual Server is free memory to store the files. That
is maintain the Client file and forward to Virtual Server.
The Virtual Server has been Send the Client requested file
to Client. Virtual Server has been maintaining the uploaded
client files only. In case it is lost, all files are moved to the
Pending pool. The detailed implementation of this module
is in Fig.6

Fig. 6 Virtual Server Implementation

V. METHODOLOGY

Symmetric Load balancing algorithm which is one of load
balancing technique which is used for Distributed Hash
Table to balance their virtual server load in a network. The
Load balance factor has been minimizing the movement
cost in network.
Load balance factor
Given the distribution of capacities of the peers and loads of
the virtual servers.
Movement cost
Given the set of peers, set of virtual servers, peer i migrates
a subset of its virtual servers to other peers.
A Symmetric Load Balancing Algorithm:
Start: load balancing, f(N,V).
Input: N be the set of participating peers in a DHT.
 V be the set of virtual servers deployed over N.
Output:Finally an error correction is observed for the

allocated peers and their virtual servers.
1. Initialize each peer i Є N has a maximum capacity of Ci
max and hosts a set of virtual servers Vi is sub set of V.
2. Vi intersection Vj = φ; for any into equal to j Є N.
3. Each virtual server v Є Vi has a load denoted by Lv

4. A to reallocate and balance the loads among the
5. participating peers, y peer i manages the total load of
virtual servers proportional to its Ci max A I
6. A computes a subset Vi subset of V for each peer i, such
that the following equation is minimized:
To ease our discussion, we define the following
terminologies and notations:

STEP1: The load per unit capacity, which is a peer that
hosts in a load-balanced DHT, is defined as

STEP2: The ideal load, denoted by , which peer i 2 N
manages in a load-balanced
DHT, is

STEP3: The remaining capacity of peer is

In load balancing algorithm intends to balance loads of
participating peers by minimizing. It also aims to reduce the
movement cost as much as possible.

 In a typical DHT, participating nodes can join and
leave, arbitrarily. Thus, the reallocation of a virtual
server from a source peer to a destination peer can
be simply done by simulating the leave and join
operations offered by a typical DHT.

 The load of any virtual server v at a particular time
is the sum of loads of objects hosted by v at that
time; the load of a peer i is the aggregate of loads
of virtual servers maintained by i.

 The potential metrics for measuring the loads
include CPU utilization, storage space, etc.

 This is able to calculate the difference between
light peers and heavy peers.

 Based on above step it will mitigate the virtual
servers has to be created in pending pool or it has
to be assigned on the light peers.

 Now this will calculate the probability distribution
for each peer to which the virtual server is
allocated from pending pool.

 Finally an error correction is observed for the
allocated peers and their virtual servers.
In proposed work, as each heavy peer selects its
virtual servers with small sizes to migrate, the
resultant movement cost is small. Thus, analyzing
the load balance factor for each peer suffices. The
load balance factor of peer I (denoted by LBFI) is
defined as follows:

Shaik Nagoor Meeravali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7779-7783

www.ijcsit.com 7781

 Here represents load balancing equation,

VI. RESULTS

Symmetric load balancing algorithm implemented using
java and SQl server, shows that this performs better in
terms of load balance factor with a comparable cost.
Distributed hash tables (DHTs) are key building blocks in
the design and implementation of successful distributed
applications.

Fig.7 Load balancing graph for 7 nodes

In Fig.7 shows, there is a less work load at 'a' and 'b'. So the
work can be assign these peers only to assign the work. The
remaining nodes has already heavy work load, so they can’t
share work.

Fig.8 Load balancing graph for 9 nodes

In Fig.8, there are two peers with less load work that are
“node1” and “node2”. So the new work can be assigned to
these two peers only. The implemented results shown that if
the numbers of clients nodes increase then parallel number
of virtual serves also increasing to balance the work load.
The details of comparison of different nodes sharing of
work load using symmetric load balancing algorithm shown
in Fig.7 and Fig.8

VII. CONCLUSION

In this paper, implemented a load balancing algorithm for
the reallocation of virtual servers in DHTs. This load
balancing algorithm operates in a fully decentralized
manner by having each participating peer estimate the
probability distribution of loads of virtual servers selected
for migration and the probability distribution of the
remaining capacities of under-loaded peers. Network
performance analysis is a follow-up to other monitoring and
tuning efforts that are specific to a work station or server
computer.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-21, Feb. 2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms, pp. 161-172,
Nov. 2001.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
Proc. 21st ACM Symp. Operating Systems Principles (SOSP ’07),
pp. 205-220, Oct. 2007.

[4] BitTorrent, http://www.bittorrent.org/index.html, 2012.
[5] J. Stribling, E. Sit, M.F. Kaashoek, J. Li, and R. Morris, “Don’t

Give Up on Distributed File Systems,” Proc. Sixth Int’l Workshop
Peer-to-Peer Systems (IPTPS ’07), Feb. 2007.

Shaik Nagoor Meeravali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7779-7783

www.ijcsit.com 7782

[6] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS ’02), pp. 68-79, Feb. 2003.

[7] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Performance Evaluation, vol. 63, no. 6, pp. 217-240, Mar. 2006.

[8] C. Chen and K.-C. Tsai, “The Server Reassignment Problem for
Load Balancing in Structured P2P Systems,” IEEE Trans. Parallel
Distributed Systems, vol. 12, no. 2, pp. 234-246, Feb. 2008.

[9] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing for
DHT-Based P2P Systems,” IEEE Trans. Parallel Distributed
Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.

[10] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-Resilient
LoadBalancing Algorithms in Structured P2P Networks,” IEEE
Trans. Parallel Distributed Systems, vol. 18, no. 6, pp. 849-862,
June 2007.

[11] H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C. Huang, “Load Balance
with Imperfect Information in Structured Peer-to-Peer Systems,”
IEEE Trans. Parallel Distributed Systems, vol. 22, no. 4, pp. 634-
649, Apr. 2011.

[12] H.-C. Lin and C.S. Raghavendra, “A Dynamic Load-Balancing
Policy with a Central Job Dispatcher (LBC),” IEEE Trans. Software
Eng., vol. 18, no. 2, pp. 148-158, Feb. 1992.

[13] F.C.H. Lin and R.M. Keller, “The Gradient Model Load Balancing
Method,” IEEE Trans. Software Eng., vol. 13, no. 1, pp. 32-38, Jan.
1987.

[14] L.M. Ni and K. Hwang, “Optimal Load Balancing in a Multiple
Processor System with Many Job Classes,” IEEE Trans. Software
Eng., vol. 11, no. 5, pp. 491-496, May 1985.

[15] L.M. Ni, C.-W. Xu, and T.B. Gendreau, “A Distributed Drafting
Algorithm for Load Balancing,” IEEE Trans. Software Eng., vol.
11, no. 10, pp. 1153-1161, Oct. 1985.

[16] T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems,” IEEE Trans.
Software Eng., vol. 14, no. 2, pp. 141-154, Feb. 1988.

[17] Y. Zhu, “Load Balancing in Structured P2P Networks,” Handbook
of Peer-to-Peer Networking, Springer, July 2009.

[18] H. Shen, “Load Balancing in Peer-to-Peer Systems,” Handbook of
Research on Scalable Computing Technologies, IGI Global, July
2009.

[19] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM
’04, pp. 353-366, Aug. 2004.

[20] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Systems,”
Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp. 444-
455, Sept. 2004.

[21] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. 16th ACM Symp.
Parallel Algorithms and Architectures (SPAA ’04), pp. 36-43, June
2004.

[22] K. Kenthapadi and G.S. Manku, “Decentralized Algorithms Using
Both Local and Random Probes for P2P Load Balancing,” Proc.
17th ACM Symp. Parallel Algorithms and Architectures (SPAA
’05), pp. 135-144, July 2005.

Shaik Nagoor Meeravali et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7779-7783

www.ijcsit.com 7783

